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Summary

The exact governing equations of fluid dynamics are too computationally expensive to
solve on a computer for practical applications. They will remain intractable for at least
the next 50 years. In order to computationally predict the performance of engineering
applications that involve fluids, alternative (and computationally tractable) equations
must be formulated. These equations are referred to as turbulence models.

This project has successfully developed an entirely new theory and computational
approach to modeling turbulence. The idea was to track a statistical ensemble of
colliding and spinning disks (oriented eddies) in colloidal suspension in the fluid. This
somewhat usual fluid model (akin to the flow of liquid crystals) was chosen because we
observed the remarkable property that this type of non-Newtonian fluid behaves just like
a turbulent fluid in the rapid distortion (large mean flow gradients) limit.

The project was successful in demonstrating that with appropriate extensions this model
of turbulence could be applied to a very wide variety of turbulent flows with high
predictive accuracy. A number of different limits in which the model is exact were
demonstrated. We were also successful in keeping the number of model constants very
low. In addition, the theory behind the model was vastly expanded when we were able
to show that this approach is equivalent to a model for the evolution of the two-point
velocity correlation tensor.

The prediction (or modeling) of turbulent fluid flow is arguably one of the greatest
bottlenecks in the Navy's ability to rapidly design innovative devices and respond to
environmental threats73. While this research does not address a specific Navy operational
issue, it has an extremely broad reaching impact on Navy operations in general and will
enhance the Navy's ability to successfully execute its mission.



Background

One of the greatest bottlenecks in Engineering Design today is the computational
prediction of turbulent fluids. In a vast variety of applications: from air pollution, to
engine efficiency and emissions, to global climate prediction, to submarine performance,
to galactic evolution, turbulence plays a critical, if not the most important, physical role.
Some of these problems will never be computationally tractable without a turbulence
model. Those that do become tractable in the coming decades (using perhaps large eddy
simulation) will then represent a stunning waste of resources that could be used more
productively for testing and optimizing multiple designs or adding additional physics.

In theory, low cost turbulence models that are predictive could have a profound effect on
how computational fluid dynamics (CDF) is used in the design process. CFD could go
from being a qualitative predictor of trends to a pervasive qualitative design tool
comparable to Finite Elements and computational mechanics. While existing engineering
turbulence models do not currently provide predictive accuracy, it is demonstrated in this
proposal that by modeling the turbulence structure as well as the fluctuating velocity
magnitudes the Oriented-Eddy Collision (OEC) model is able predict the influence of the
mean flow on the turbulence exactly. Since this is the dominant physical effect on the
turbulence evolution, the OEC model is highly predictive (only turbulence-turbulence
interactions require modeling and this process is relatively well understood). The price
for this predictive accuracy is an order of magnitude increase in the cost of the model
compared to traditional approaches. This puts the model cost at a few times the cost of
the mean flow calculation (which is appropriate given the critical physics contained
within the turbulence) and many orders of magnitude less expensive than large eddy
simulation (LES) or direct numerical simulation (DNS) solutions. This is a region of the
cost/performance parameter space that has not been extensively explored previously in
the context of turbulence modeling and which holds great promise.

Significance & Objectives

The computational resources required to solve the governing equations of fluid dynamics,
the Navier-Stokes equations, increase as the cube of the Reynolds number (Rogallo &
Moin). If large eddy simulation (LES) models are eventually successful this exponent
could be reduced. Still, LES of a passenger jet wing is not expected to be possible on the
largest supercomputer until around 2045 (Spalart). This assumes current increases in
computer speed, which may well not continue. Most environmental problems have much
larger Reynolds numbers and may never be computationally tractable with these
approaches. Even problems that do become tractable are a waste of resources in the
context of Engineering Design where Computational Fluid Dynamics (CFD) has the
potential to be the most useful. Computing a few engineering parameters (such as wing
drag) with LES and the supercomputer of the year 2045 is akin to swatting a fly with a
nuclear bomb. These resources could be used much more effectively to optimize the
design or add additional physics. Computers are having a profound effect on engineering
design, but progress on problems involving fluids has been, and will remain, stalled
indefinitely until cost-effective and predictive turbulence models are developed.
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The purpose of this project was to develop a turbulence model that included more physics
(thereby increasing the predictive accuracy) while at the same time drastically reducing
the number of empirically determined model constants. This comes at a significant
computational price, but not a price that is out of line with the importance of the turbulent
physics that the model is required to represent. It is a price which is many orders of
magnitude less than LES or DNS, and yet still provides the predictive accuracy necessary
to move CFD from being a qualitative predictor of trends, to a pervasive quantitative
design tool comparable in utility to current day Finite Elements in computational
mechanics.

Classical Turbulence Modeling

The coarse-grained equations for incompressible fluid flow are given by,
uiit + (•iuJ), = -T., + vi7,.1 -(u-- 1 -ij). (1 a)

u-,i ( 1 b)
These look almost the same as the original governing Navier-Stokes equations except for
the final source term in the momentum equation. The tensor in the final term represents
the influence of the unresolved turbulent fluctuations on the coarse-grained velocity
evolution. When a Reynolds (ensemble) average is used R, = uuj - uWuj is referred to as
the Reynolds stress tensor. In large eddy simulation, this quantity is referred to as the
subgrid-scale stress tensor.

The Reynolds stress tensor is the critical unknown that results from coarse-graining the
Navier-Stokes equations. It describes how turbulent fluctuations influence the mean (or
resolved/coarse) flow evolution. Once a model for the Reynolds stress tensor is
formulated these equations are much easier to solve computationally than the original
Navier-Stokes equations. Most importantly, when mesh adaptation is employed the
computational cost does not scale with Reynolds number. These equations look like the
Reynolds Averaged Navier-Stokes (RANS) equations formulated over a century ago
(Reynolds). However, it has recently been recognized that these equations hold for any
type of coarse graining (not just the Reynolds ensemble average), and are directly
applicable to LES (Germano). Since the fundamental modeling problem and equations
are the same for both RANS and LES, the model discussed in this proposal is equally
applicable (and actually very well suited except for its cost) to LES.

In the context of turbulence modeling the workhorse of both commercial and in-house
Computational Fluid Dynamics (CFD) codes is the two-equation models, most notably
the K-c model. These models involve modeled partial differential transport equations for
two scalar turbulence quantities (most often the turbulent kinetic energy, K, and
dissipation rate, E). There is also a hypothesized algebraic constitutive equation relating
these two scalar quantities and the mean (or coarse) flow information to the Reynolds
stress tensor. In many respects, the predictive performance of two-equation models is
phenomenally impressive given the complexity of the physical process that they are'
charged with representing. They work quite well predicting basic turbulence producing
regions such as simple boundary layers and free shear layers. The modifications based
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on renormalization group theory (Orzag & Yakhot) and elliptic relaxation (Durbin) have

even expanded the predictive scope of these models. Nevertheless, it is well understood
at this time, even by CFD users, that the physics contained in these models is
fundamentally limited. These types of models are incapable of predicting with real
predictive accuracy the wide variety of turbulent conditions found in real engineering
design applications.

It was expected that Reynolds Stress Transport (RST) models would perform
considerably better. These models do not use a hypothesized constitutive equation for the
Reynolds stress tensor. Instead, they start with the exact (but unclosed) transport
equation for the Reynolds (or subgrid scale) stress tensor,

R Y., + ui RY A = vR U.A -(R kUk + Rk "jk,) (2)

-u I u I k j,- P ',u I+p 'J,uj,)- 2 vu',k, u'jk,

The last three source terms (the transport term, the pressure term, and the dissipation
term) require modeling. The lack of an ad hoc constitutive equation is a very important
step, but just as important is the fact that the influence of the mean flow on the turbulence
evolution (the second term on the right hand side of the transport equation) is closed and
does not require a model. Mean flow gradients are the primary mechanism for turbulence
generation and this equation suggests that this mechanism is exactly captured.

Unfortunately, the predictive promise of RST models has not been realized and while
RST models are available in most CFD codes they are rarely used. In practice, their
predictive performance is rarely better than the more computationally robust two-
equation models. The problem lies in the fact that the pressure term also carries
information about the mean flow gradients which is just as important as the explicit
production term but which is extremely difficult to model. The effect of the mean flow
gradients is therefore not exactly captured. The modeled pressure term must capture
those effects. It has even been shown that modeling this term is fundamentally
impossible in certain circumstances using only the information provided by the RST
models (Reynolds, Speziale). In addition to this fundamental shortcoming RST models
have another significant source of error and uncertainly. This is the ad hoc transport
equation (usually an E equation) that is required to close the system. Other issues exist
but these two effects (the pressure-term and additional transport equation) represent the
majority of empirical model constants and predictive uncertainty in RST models.

The Problem with Classical Models

Some typical results for a RST model are shown in Figure 1. In each of these situations,
homogeneous isotropic turbulence is subjected to a very simple arrangement of mean
flow gradients. Depending on the particular arrangement of mean flow strains, certain
components of the Reynolds stress tensor are amplified with time and others decrease. In
Figure 1, the circles are direct numerical simulation (DNS) data and the lines are the
corresponding RST model predictions. In some cases, the model predictions are quite
accurate; however, in others the agreement is poor. The level of predictive performance

can be characterized by the dimensionless velocity gradient, S* = (u,.juj)" KK/c. This
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Figure 1: State-of-the-art RST model predictions of turbulence subjected to simple mean flows.
Dimensionless normalized shear stress as a function of dimensionless time. Symbols are
experimental or DNS data and lines are RST model predictions. (a) plain strain, S'* = 0.5 (b)
plain strain, St = 4 (c) axisymmetric contraction, S* = 4.08 (d) axisymmetric expansion, 5" =
55.8 (e) homogeneous shear, S* = 4.71, (f) homogeneous shear, S* = 30.9. Data of cases (a-d)
are from Lee & Reynolds and (e-f) from Matsumoto.

is a ratio of the turbulence response time to the mean flow time scale. If S* is small the
turbulence response time is much less than the time over which the mean flow changes
appreciably. In this case, the turbulence is always in quasi-equilibrium with the mean
flow (since it can respond much more quickly than the mean flow is changing) and the
RST model performs well. However, when the turbulence is subjected to rapid changes
the model performs poorly. RST models are fundamentally quasi-equilibrium models.

There are many flow situations such as turbulent boundary layers and shear layers where
the flow is in quasi-equilibrium. However, in engineering applications there are usually
critical flow regions where quasi-equilibrium is not a good approximation. These include
separating flows, transition, reattaching flows, fast moving boundaries (such as turbine
blades) and flows under the influence of strong body forces such as .gravity or
electromagnetic forces. While the non-equilibrium regimes occupy less volume in a
typical CFD calculation that the quasi-equilibrium regimes they often dominate the
critical physics and frequently dictate the overall predictive performance of the
turbulence model. Figure 2a shows a pictorial representation of parameter space.
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Figure 2: Pictorial representation of state-space and the regions of applicability of (a) traditional
engineering turbulence models and (b) the eddy interaction model. Traditional models perform
well close to the origin where the turbulence is in quasi-equilibrium with the mean flow and/or
external forces. The OEC model increases the range of predictive performance significantly by
exactly capturing mean flow (or external force) effects that dominate when the flow is not in
equilibrium.

Traditional turbulence models are predictive only near the origin of this diagram where
the flow is close to some equilibrium state.

What is most interesting is that the highly non-equilibrium regime should be the easier
regime to model. A high degree of nonlinearity implies a strong separation of time
scales, which in turn implies that course graining could be accomplished very accurately.
While turbulence does not contain a separation of length scales (the large turbulent length
scales are always the same order of magnitude as the mean flow length scales), it
sometimes does contain this time scale separation that can be advantageous. The OEC
model described below is exact in the limit of very strong mean flow gradients (the non-
equilibrium limit). As shown in Figure 2b, this implies that very far from the origin of
the diagram the model is exact. This type of model is inherently much more predictive.

The influence of the mean flow on the turbulence (or Reynolds stress tensor) evolution is
a linear process (only turbulence-turbulence interactions are nonlinear). Therefore, in
theory, it should be possible to capture this effect exactly, and this is indeed the case.
The key insight that is necessary to do this is to recognize that although the Reynolds
stress tensor contains sufficient information to describe the turbulence effects on the
mean flow it does not contain enough information to correctly represent the influence of
the mean flow on the turbulence . To capture the influence of the mean flow exactly the
model must also capture the effect of the mean flow gradients on the turbulence structure.

The Solution

In this work, we use two-point correlations as a measure of turbulence structure. If two
nearby points in a physical domain have a very high correlation between their velocities,
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this implies that turbulence structures tend to be aligned with the line joining those two
points. If two points have a low or negative velocity correlation, it implies that the
turbulence structure does not span the distance between those two points.

One major result of this project has been the discovery that the OEC model is related to
the exact two-point correlation equation.

- k a-rk

-- --) -- 2E, 22i& +2c,) (3)
&k ak r &ka arl5

where r = i - x is the distance between two points in the domain. The pressure velocity
correlation is actually closed in this equation. It does not require a model and can be
obtained from the equation,

a2 Up acj a I Tj Qk= -2i7k,j(i) ' 2 - (4)
&,ar, a rk rjrk

Only the triple velocity correlation, T,(jk), representing turbulence-turbulence interactions,
requires a model to close Eqn (3). The Reynolds stress tensor (needed to predict the
mean flow) is given by Rj (x) = C. (x, 0).

The reason this equation has not been used as a starting point for practical turbulence
models in the past is due to its high dimension. A very coarse discretization of r, with a
0xl0xl 0, mesh implies the need to solve 1000 transport equations for each point in

physical space. This cost is too high. A key cost savings comes from recognizing that
only very basic information about how the correlations behave in r is necessary to
capture the Reynolds stress evolution (at r = 0) correctly. Our real goal is to model the
Reynolds stress evolution accurately, not the two-point correlation. We therefore
parameterize the shape of the correlation with the vector parameter, k. and assume that
the sum of a few parameterized correlations is sufficient to represent a general correlation
function,

C. (x, r)= • Je(x)e-IkrI (5)
Experimental data suggests that an exponential is a good parameterization for the
correlation function (Compte-Bellot & S. Corrsin). We have briefly explored the use of
other functions and this aspect of the model will be further explored in the proposed
work. The model might be considered to be an assumed shape two-point correlation
model. It gives roughly the right balance between physical accuracy and computational
cost.

Inserting the parameterized two-point correlation (Eqn. 5) into the exact two-point
correlation equation (Eqn. 3), and making a similar decomposition for the velocity-
pressure correlation, results in the following equations.

[2U,1-k7 - u..[] +khi, []+,I"k' -Wk]2vk R,J. k, )MI, (6a)
°"D,, - ,hi T+ R h 7 m2

ki, = -kkik, - 2 vk 2k, -_ P 5-u- i, + m, (6b)
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where . = (Kk2)"2 is the inverse turbulence timescale. The terms , DJ , m, represent

the nonlinear turbulence-turbulence interactions and must be modeled.

The models for both D, and m, each currently involve one empirical model parameter.

However, as a part of the proposed work plan below we have definitive approaches that
could reduce the number of empirical model constants to zero for these two terms. The
inverse timescale constant .,, was set via DNS data for isotropic decay. It defines the
cross over between high and low Reynolds numbers and has very little influence on most
predictions (which are at high Reynolds numbers). A good parameterization of the two-
point correlation requires a number of these equation systems to be solved (and then
summed, Eqn 5). The exact number of systems is a question to be explored in more
detail in this project but preliminary results are presented below in the cost section of.the
proposal.

It has been shown analytically and is demonstrated in some of the figures below that this
model gives exact results in the limit of large mean velocity gradients. In addition, the
model captures both very low Reynolds number and very high Reynolds number
isotropic decay exactly. Isotropic decay depends on nonlinear turbulence-turbulence
interactions (the energy cascade). While this process must be modeled, it is notable
there are no empirical constants associated with the cascade model in the eddy collision
approach.

The OEC model is almost unique in its ability to capture mean flow effects on turbulence
exactly. The other two examples of models with this ability are based on the Fourier
transform of the Navier-Stokes equations (Reynolds & Kassinos, Van Slooten & Pope).
They appear to be strictly limited to homogenous turbulence and periodic domains. The
two-point equation (Eqn. 3) and the resulting OEC model are fully general and have no
such restrictions.

Detailed Equations

Two main equations are used to represent the oriented collision model. The first one
represents ,k which is the Reynolds stress (average velocity fluctuations) for one

orientation k, (see equation 7b below). The orientation vector, k,, has units of 1/length
and captures the eddy size and orientation.

PL, = R jk [ i,k + 2u *k (t ' -) [ U,,, + 2 , ( k - (7a)

-( vk'+a±)A, -aH (ý-)D -L-n, + (h,' + h,, + V(v +. v,) V,)

where (.L) =(-L)= K' ( J-•-)qI2 kI(-)P. The total Reynolds stress defined as R1 j is the

averaged sum of the individual RJ, meaning R,, ER XR,. Equation (7a) has seven grouped

terms. The mean flow gradients and system rotation is accounted for by Uk = ',., + ekk
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with Qk being the rotation vector for a non-inertial frame. The dissipative behavior of the
model is captured by (aLvk2 +aH ±)R• and a(9)D• is the return-to-isotropy model

discussed in section 3.3 below. The factor (G) is the timescale used to model the

dissipation. I n, is the rotation term. The six term Ro 2Lk + rm, arises from the need

to maintain orthogonality (R,/k, = 0) between the orientations and the R, ((m, is the k-

return model). Incompressibility requires Rok, = 0. The final term V (v + VT ) VR, models

the diffusive action of the Reynolds stresses.

The second equation represents the orientation ki with its time-derivative defined as:

kj,, = -kkilk,, -! (aLvk 2 +a -L)k + n, + (m, + V(v + vT)Vk, (7b)

The above equation contains six grouped terms. The first terms captures the mean
gradient effects (shear). This term is the equation for passive disks. Just as in (2.3.1), the
second term captures the dissipation; 1 takes on the value 3 or 5 respectively for the / 2

or k4 low wave number. The third term n, present in -,n, models the secondary rotation

effects and m, is the return model for the orientations. The last term,
V(v + VT)Vk, accounts for the diffusive action of the orientation vectors ki.

In addition,
[,, -W' av k-O a,

K, >Ik 'k )D (8)

Hence,

t= aLv3k2k + a, Z(-I)D,, (9)

Ability to Represent Two-point Correlations

The unknowns in the oriented eddy model are closely related to the two-point
correlations. In this section, we take a brief look at this relationship. Assume

R, (i, F) , zt RY F(k. -F) where F(q) is a simple function of F, the distance between two

points. Considering the specific case where F(k, F) = e krj, then R,. (i, F) = Y Rjhue .

When looking at the two point correlation in the x-direction for example, we get
R,,(r,,r 2,r3) Y. h le kr+krz.klrI

Similarly for R22 and R33:
R 22 (r,r 2 ,r 3 ) Y Y- 122e k~ik~r+k,£

R3(r Ir2,r3) ' Z 33e ejkr,+k 2 .~ker3
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Hence, we obtained the contour plots shown below that look very similar to the two-point
correlations found from DNS data.
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Figure 3. R,1 , R22 and R33 as seen from the r3-direction.

DNS two-point correlation data corresponding to the first two figures above (the model)
is shown below in Figure 4. The shapes are very similar. The mesh size used in the
DNS simulation was 768 by 768 by 1536 cells, with a domain size of 56.54 by 56.54 by
113.09 centimeters.
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Figure 4. A planar slice of a three dimensional R11 and R22 two-point correlation in the X-Y
plane about Z=0.

A major break through of the current modeling approach is the ability to model the
"blocking' affect of walls exactly. After a vertical wall is inserted ( at y = -2 in the
figures above) the two-point correlations are dramatically altered. This is shown in
figure 5.
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Figure 5. A planar slice ofRI 1 and R22 two-point correlations in the X-Y plane about Z=O after a
wall is inserted at y=-2.

The essence of the exact wall representation is shown in figure 6 for the R22 correlation
This correlation is chosen to illustrate the idea because it is the most dramatically altered
correlation. In the figure below, the red is DNS data and the blue is the model. This
figure is the R22 correlation along a line perpendicular to the wall. Only results to the
right of y=-2 matter. To the left of y=-2 there is now a solid wall. The model uses
image eddies to exactly capture the influence of the wall on the two-point correlations.
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COl LocationFigure 6. A demonstration of how wall effects can be exactly captured by the eddy OEC model.
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NUMERICAL RESULTS

Below is the table that summarizes the different sections and results of the current
project S ~Decaying Grid Turbulence

Isotropic Decay Rotating Decaying Turbulence
(Rotation Model)

FG R-Return Model

R t able 1.RserhSumr

Isotropy Models K-Return Model

n g oeno l ae tRapid Distortion Theory
-• Shear/Strain

rFlows o Irrotational Strain
Shear Flow

(Rotation Model)

et t h f f d ia o n a LR c a l E d d y -V is c s ity M o d elno 
o

Matemticll, hicorresponds to R1  Kc-

Flows Global Eddy-Viscosity isotel

Table 1. Research Summary

1. Isotropic Decay

In general, when the properties of a material are the same in all directions, the material is
said to be isotropic. In the case of turbulence, if the fluctuations are independent of
direction, the turbulence is isotropic. When the fluctuations do not have any directional
preference, then the off-diagonal components of Rii vanish, and R, I=ZR22 :=R33.

Mathematically, this corresponds to Rij= 2 K 8j

In this work, it is necessary to define isotropy for the orientations as well. For isotropy,
all orientation vectors have the same magnitude and are uniformly distributed on the

sphere.
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Von Karman & Howarth first suggested in 1938 that the decaying turbulence should have
a power law behavior of the form:

K= K0 1 -0, (10)
(nK 0 )

where K0 is the initial turbulent kinetic energy and e0 represents the initial dissipation,
and n is the decay exponent. While all researchers agree on the power law form, there is
less agreement on what the value for n should be. However, most investigators agree that
the exponent n is highly dependent on the low wavenumber k of the energy spectrum
(Saffinan). In the case where the low wavenumber portion of the spectrum goes as k2 , n
corresponds to 3/2 at low Reynolds number and 6/5 at high Reynolds number. On the
other hand, when the low wavenumber portion of the spectrum goes as/k4 , n corresponds
to 5/2 for low Reynolds number and 10/7 for high Reynolds number.

We will attempt to obtain all these limits with the OEC model. For isotropic decaying
turbulence, the dissipation e is,

dK
= - (11)dt

Substituting, equation (3.1.1. 1) to (3.1.1.2) above, we obtain:( --
= 1 + 60 (12)

(j nK0 )
In this section, our model attempts to capture the evolution of n as a function of the

K
2

turbulent Reynolds number (ReT =- , with v being the fluid kinematic viscosity) for

low wavenumber (not orientations) of k 2 and k4 . Figure 4 below summarizes the results
obtained when the low wavenumber behavior of the spectrum is k2

13
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Figure 7: Power-law exponent as a function of the turbulent Reynolds number for a/k 2 low
wavenumber spectrum.

The thick maroon and dark green lines represents the model predictions (aL = 6,15,30

for aH = 1). For our purpose, we determined that the ratio a---L = 15 (maroon curve) best
aH

matched the DNS simulations of Chasnov, Mansour & Wray. The upper and lower purple
dashed lines included in the figure are the low and high Reynolds bounds on n. Notice
that the model obtains these limits independent of aL. Also on Figure 7 are shown the
exponent values for the DNS of de Bruyn Kops.

When the low wavenumber behavior of the spectrum goes as/k4 , we obtained the results
shown in Figure 8 below. Again, the horizontal green dash lines represent the upper (5/2)
and lower (10/7) limits of the exponent for / 4 spectrum. The thick purple and blue lines

are the model predictions forAL = 10,25,50. In addition to these curves, there are four
AH

1283 DNS simulations by Yu et al. and four 2563 DNS simulations by Mansour & Wray.

For the same reason mentioned above, we determined that AL = 15 (not shown) is an
AH

adequate compromise. Note that this ratio is similar to the one determined above for k2 .
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Figure 8. Power law exponent as a function of Reynolds number for a j
4 low wavenumber

spectrum.

Kinetic Energy
In this section, we focus our efforts on predicting the decay of kinetic energy in isotropic
flows (other than just the exponent). This is essentially a posteriori test of the chosen

value = 15. We test the model against numerous published data: some experimental,
v AH

some LES and other DNS. In determining the kinetic energy, the equations used in our
model predictions originate from equation (7a) and (7b) above with the particularity that
the flow is isotropic. Hence, there is no need to include the return-to-isotropy (DO = 0 ) as

well as the diffusion terms: V(v + vr)VR, = 0, V(v + vr)Vk, = 0 . Thus, in cases where
no rotation is present,

-(I, =-(15vk2 +I ),, (1 3a)

k,, =-(15vk2 +I)kI (1 3b)

where 1 = 3 for k2 and / = 5 for k 4 low wavenumber spectra.
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Data and model predictions are shown below for low and intermediate turbulent
Reynolds numbers. In addition, we state all initial conditions in Table 2 below:

Wigeland & Nagib Mansour, Jacquin de Squires
(exp. Data) Cambon & (exp. Data) Bruyn (LES)

Speziale Kops
(DNS) (DNS)

(m/s) 14.85 2.96 2.77 0.93 0.95 11.73 16.43 30.93 0.782 1.27 1.35
K(m2/s") 0.098 0.045 0.029 0.964 0.977 0.15 0.264 0.462 0.087 0.265 0.298
v(m2/s) 1.8 1.8 1.8 3.67 1.49 1.51 1.51 1.51 1.49 8.6 8.6

e-5 e-5 e-5 e-2 ' e-2 e-5 e-5 e-5 e-5 e-5 e-5
ReT 36 38 17 27.2 67.1 127 281 457 655 643 764

Table2. Initial conditions

In Figure 9, the kinetic energy is represented versus time. The asterisks, the triangles and the stars
correspond to the experimental data with corresponding Rer=36, 38 and 17 while the dashed lines
correspond to our simulations.

0.105 1 1 1 1 1 1 1 1 1

Wigeland and Naqib: no rotation
0.09 * * ReT=36* A A Rer=38

* ** ReT=17
0.075

C 04 0.06

S0.045 . ' 4

0.03

0.015

0 I I I ""*"I I I I I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t

Figure 9. Wigeland and Nagib's decaying kinetic energy.

In Figure 10, the kinetic energy versus time is shown. The orange dots correspond to the
experimental data for ReT=27.24 and the purple ones are for ReT=67.1. The solid lines
correspond to our simulations.. Clearly, the OEC model shows good agreement with the
DNS data of Mansour, Cambon and Speziale.
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Mansour, Cambon and Speziale: no rotation
9 * exp. data, Rer=27
o 0 exp. data, Re-r=67

0.8
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t

Figure 10. Mansour, Cambon and Speziale's decaying kinetic energy.

Figure 11 shows the kinetic energy versus time. The asterisks correspond to the
experimental data and the dashed lines correspond to the simulations.
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Figure 11. Jacquin's decaying kinetic energy.

Figure 12 shows the kinetic energy versus time. The red asterisks correspond to DNS data
of de Bruyn Kops for ReT=655 and the dashed lines correspond to the oriented eddy
model simulations.

0.1
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NE5
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i0 I I I I I I I
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t

Figure 12. de Bruyn Kops's decaying kinetic energy.
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Figure 13 shows the kinetic energy versus time. The green asterisks correspond to the P2

experimental data with Re. = 643. The red asterisks represent k4 data with Re = 764.
The blue and pink lines correspond to our simulations.
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0.0002
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t

Figure 13. Squires' decaying kinetic energy for both k2 and k4.

Based on the data presented above, it is concluded that the OEC model performs well in
predicting the decaying kinetic energy for simple (homogeneous, isotropic and
irrotational) turbulent flows.

Rotating Decaying Grid-Turbulence

To measure the degree of rotation present in the flow, we used a turbulent Rossby
number defined as follow:

6

ROT- = (14)KQ1
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Large RoT means no rotation, whereas RoT < 1 implies a flow dominated by rotation.
With rotation present, the model equations become:

ki't =-(Il5vk' + -)kj - In, (15)

Three models for the rotation term were tested:
nA j = k 1 .+C jkjjfl i

or

n, ( ,.),) , (16)

or

nn --k2 1k+(.2 k

where Q,= =_k Ukkj + W".e In earlier work Chartrand briefly looked at the first two

models, nl, and n, . However, after extensively studying the performance of each of
these models and comparing them to multiple DNS results, we came to the conclusion
that the above two terms each only captures a different aspect of the rotation. Hence, the
third model was developed.

With each model, come two constants C, and C2 that are used to tune the model
behavior. That is, C, and C2 are both model-dependent. From equations (3.1.3.3) above,
it is clear that C2 affects simulations at large rotation rates while C, acts at small rotation
rates. We used this concept in determining the values for both C, and C2 . Table 3 below
summarizes the values:

Model Formula C1  C2

k (CIk2KI+clkll I) 8 0.25

(C,k2K+C 2 (6*)2) 20 'A

(ý.!')2 1k2 kSmooth k () 2K+/ 2 (1), 20 /

Table 3: Rotation-models along with their respective tuning constants C, and C2

Next, we compared the performance of each model for three sets of data: Jacquin,
Mansour Cambon & Speziale, and Blaisdell. The k-smooth model outperforms the other
two. The initial conditions are shown in Tables 4, 5 and 6 below:
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Mansour, Cambon & Speziale Jacquin BlaisdellI(m/s 0.93 0.95 11.73 16.43 30.93 1.78
K(m Is 0.964 0.977 0.153 0.288 0.444 1
v(mi/s) 3.67e-2 1.49e-2 1.51e-5 1.51e-5 1.51e-5 4.41e-2

ReT 27.2 67.1 127 281 457 12.75
ROT ".37 0.037 0.24 0.1 1.22 0.91 1.10 -

S ............ -- 3 - - - -

Table 4: Initial conditions of Mansour, Cambon & Speziale, Jacquin and Blaisdell.

Wigeland & Nagib
(m2/s_) 14.67 14.94 3.49 3.36 3.36 22.26

K(m/sz) 0.0975 0.105 0.0462 0.051 0.033 0.096
v(mi/s) 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5 1.8e-5

ReT 36 41 34 43 18 23
ROT 7.52 1.78 3.77 0.82 5.09 2.9

Table 5: Wigeland & Nagib's initial conditions.

Shimomura de Bruyn Kops Veeravalli
E(m2/s3) 0.024 0.025 0.028 0.0992 7.96 8.13
K(mn/s) 0.098 0.2619 0.5638 5.888e-2 0.17 0.202
v m/Is) 8.0e-3 8.0e-3 8.0e-3 1.4854e-5 1.6e-5 1.6e-5

ReT 50 343 1419 2353 227 313
ROT N/A 0.095 0.017 0.006 0.5 0.32

Table 6: Initial conditions of Shimomura, de Bruyn Kops and Veeravalli.

In Figure 14 below, the performance of each model is analyzed using the DNS data from
Jacquin. Our simulation matched the dimensionless initial conditions of Jacquin as
represented in Table 4. The crosses, stars and dots represent the experimental data. The
solid lines represent wo, the dashed lines k and the dotted lines k-smooth.

21



0.2 _

0.175 - model comparison+-• DNS
1 0)

0.1 ----.- k-smooth

0.125

E 0.1

0.075

0.05 -

0.025 -

0 I I I I I I I I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
t

Figure 14: Performance comparison of k, co and k-smooth rotation terms.

Looking at the graph above, it is concluded that all three rotation models performed
equally in this case, due to the somewhat identical turbulent Rossby numbers (1.22, 0.91
and 1.10).
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In Figure 15, the dimensionless initial conditions of Mansour, Cambon & Speziale were
matched for Rer=27.24.

SManCamSela: Rer=27.24, Ro=0.37
" " data

0.9 - (D

- - k-smooth-- - k

0.8

0.7 -

S0.6

0.5-

0.4-

0.3
0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

t

1

0.95 ManCamSpelb: .. Rer=27.24, Ro=0.037 I

0.9 - data
(0)

0.85 - k-smrooth

0.8

0.75

C4 0.7

E4 0.65

S0.6
0.55

0.5

0.45

0.4 -
0.35 -

0.35

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75

t

Figure 15. Performance comparison of k, co and k-smooth rotation terms based on Mansour,
Cambon and Speziale experimental data. a) Ro=0.37. b) Ro=0.037.

23



In Figure 16, the dimensionless initial conditions of Mansour, Cambon & Speziale were
matched for ReT=67. 1.

ManCamSpe2a: Re=67.1, Ro=0.24
"0.9 �" "data0.9 -- -- 0) .

-- k-smooth

0.8

N

' 0.7

0.6

0.5 -

0.4 I I I I
0 0.2 0.4 0.6 0.8 1 1.2 1.4

t

1 1 1 1 1

ManCamSpe2b: Rer=67.1, Ro=O.1
0.9"** data

- - k-smooth

0.8

S0.7

0.6

0.5
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0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
t

Figure 16: Performance comparison of k, co and k-smooth rotation terms based on Mansour,
Cambon and Speziale's experimental data. a) Ro=0.24. b) Ro=O. 1.
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We also evaluated all three rotational models for homogeneous flows; specifically, using
data from Blaisdell's elliptical flow as shown below in Figure 17:

1.4 1 1 1 1 1 1 1 1 1 1

1.2

0.8 ....-

0.6 4 WV

0.4............

0.2

Blaisdell's elliptical flow: (;=1, C2=1oq p% • • DNS ... k
S .... CO• --- k-smnooth

-0.2 "--L . " ..

-0.4

-0 ,6 IIII I

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

St

Figure 17: Performance comparison of k, co and k-smooth rotation terms for Blaisdell.
(homogeneous shear flow)

From the graphs above, the k-smooth model is always consistently between the k and the
co-models. And sometimes the difference is so subtle that it is almost negligible. In the
Blaisdell case however, the w co-model performs very poorly. Hence, it was decided that
the k-smooth model performs the best. So, the OEC model was tested against other
published data such as Wigeland &Nagib, Jacquin, Shimomura, de Bruyn Kops,
Veeravalli and Mansour, Cambon and Speziale. (The initial conditions are presented in
Tables 5 and 6 above). The non-rotating initial conditions for Wigeland & Nagib as well
as de Bruyn Kops were already given above in the prior section on decaying turbulence.

In Figure 18 below, the asterisks, triangles and stars represent the experimental data of
Wigeland & Nagib for low Reynolds number, while the dotted lines represent the
predictions for the collision model.
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Figure 18: Rotating isotropic decay of Wigeland & Nagib using the rotation model nc.

Turbulent kinetic energy versus time.

In Figure 19, the asterisks, crosses and squares represent the experimental data of
Jacquin, while the dashed lines represent the predictions of the collision model with
n, for rotation model. The numbers in parenthesis 140, 310 and 500 correspond to the

turbulent Reynolds number.
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Figure 19: Rotating Isotropic decay of Jacquin. Turbulent kinetic energy versus time.
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In Figure 20, the asterisks represent the experimental data of Shimomura (for both
irrotational and rotational cases), while the solid lines represent the predictions from our
collision model. As summarized in Table 6 above, the turbulent Reynolds numbers
correspond respectively to 50, 343 and 1419. In addition, the data'sets are for/k 2.

0.6 1 1 1 1 1 1 1
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0.45 12151
0.4 - XXft ýK>
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S0.25 : -
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0.0
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t

Figure 20: Rotating isotropic decay of Shimomura. Turbulent kinetic energy versus time.
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In Figures 21 and 22, the asterisks represent the experimental data and the solid lines
represent the predictions from our collision model.

0.06 , 1 1 1 I 1 1 1 1

0.055

do Bruyn Kops:
* * ReT=2353, ROT=O.006
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Figure 21: de Bruyn Kops rotating decaying turbulence. Turbulent kinetic energy versus time.
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Figure 22: Veeravalli's decaying kinetic energy. Kinetic energy versus time.
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In Figure 23, the asterisks represent the experimental data and the solid lines represent
the predictions from the OEC model.

I I j -- 1 1
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Figure 23: Rotating isotropic decay of Mansour, Cambon and Speziale. Turbulent kinetic energy

versus time. a) ReT=27.2 and b) ReT=67. 1
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Rapid Distortion Theory

In turbulent shear flows, the turbulence-to-mean-shear time scale ratio defined as SKk
varies between 0 and oo. In the limiting cases when the ration SKI8 is exceptionally large,
the evolution of the turbulence is then described exactly by rapid-distortion theory or
RDT. Previous work compared this model performance to that of a standard RDT solver
(by Chartrand). This time, we compare our model performance to that of RDT cases of
Matsumoto, Blaisdell and Lee & Reynolds, with initial conditions summarized in Table7
below. Lee & Reynolds experimented three cases: axisymmetric contraction (AC),
axisymmetric expansion (AE) and plane strain (PS). Matsumoto's case includes two DNS
(high and low Reynolds numbers) with shear (S) deformation while Blaisdell has one
elliptical (E) case.

Lee & Reynolds Matsumoto Blaisdell
(AC) (AE) (PS) S (E)

(m2/s%) 0.018 0.122 0.25 0.185 1.79
K(m /s2) 1.0 1.0 1.0 0.2 1
v(my/s) 10 10 10 1.2e-2 4.41 e-2
S (s) 1 0.5 1.0 28.28 3.0
ReT 5.59 0.82 0.4 18.18 12.75

SK/E 55.87 4.08 4 30.6 1.68

Table 7: Initial conditions of Matsumoto and Lee& Reynolds.

Also, included in Table 8 are the non-zero mean velocity gradients for simple
deformations.

Axisymmetric Axisymmetric Plane Shear
contraction expansion Strain

R11 S -2S S 0

R22  1 S S -S 0
2

R33 I S 0 0

2
R12  0 0 0 S

S -(2_SySS_)112 F-3S 2JfS -2S 2S

Table 8: Tensor matrix for simple deformations.

The graphs below summarize the results:
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Figure 24: Lee & Reynolds' axisymmetric contraction. The dots represent the DNS and the lines
represent the OEC model prediction. SK/e=55.9.
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Figure 25: Lee & Reynolds' axisymmetric expansion. The dots represent the DNS and the lines
represent the OEC model prediction. SKJ6=9.08.
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Figure 26: Lee & Reynolds' plane strain. The dots represent the DNS and the lines represent the
OEC model prediction. SK/e=4.
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Figure 27: Matsumoto's shear deformation. The dots represent the DNS data and the lines
represent the OEC model prediction. The large imposed strain (SK/e=30.6) implies RDT is

closely approximated.
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The next simulation we did is based on Blaisdell's DNS. Here, the fact that both the
strain ratio and the turbulent Reynolds number are small (respectively 1.68 and 12.75) in
addition to the initial random field justifies the RDT approximation. Furthermore, we ran
four simulations: one with only the return-model on, a second one with just the rotation
model on, a third one with both return and rotation models on, and finally the RDT case
(return and rotation models both turned off). Looking at the graph below, we were able to
prove that both return and rotation have no effects in this case. The results are shown
below in Figure 28 and 29. The dots represent the DNS and the lines show the model
prediction.
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Figure 28: Blaisdell's elliptical flow with a) return model on, b) rotation model on and c) both
return and rotation models on.
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Figure 29: Blaisdell's elliptical flow: RDT

Return-to-isotropy Models

For anisotropic cases, a term to model the return to isotropy behavior of turbulent flows
was introduced. From equation (7a), the term the corresponds to the return-to-isotropy
model for the Reynolds stresses is,

I )Dj(1 7)

The oriented-eddy collision model includes two types of return representations R~. and

k -return.

Ri -return model

Dwas modeled in the following ways:

Dqj CR[R N(~~ kv) (1 8b)
A, c = ( k ' ] ( , k , L t j ( I ( 8 c )

'I1 k 2 Kl¾VLR& R.,] ()K~LR~,

D~j = (K- Aýý - R ,1  (I 8d)
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The first two equations are modeled after Rotta's Reynolds Stress Transport (RST) return
models. That is, both equations (18a) and (18b) work by relaxing each individual
Reynolds stress towards an isotropic state (e.g. from an ellipse to a sphere) with (D. B ) or
without (D. ) regard to the other eddies. The only difference between the two equations

is that one uses the individual kinetic energy of each eddy (k), while the second
equation uses the average global kinetic energy (f); thus we refer to DA as Rotta-L
(Local Rotta) and D, B as Rotta-G (global Rotta). CR is a tuned constant that we
determined as 4.0 in the case of Rotta-L and 2.5 for Rotta-G. Note that equations (18c),
(18d) and (18e) do not have a tunable constant. Those were generated by Perot &
Chartrand.

k-return Models
This k-return model is part of the orientation equation (7b) and corresponds to:

(,)m ýj (19)
The term m, here was modeled two ways:

MA =CKI(34LKh -9Ajkk (20a)
with k2 =Ikk 2 and Kk, =(k kkk,)/( k 2)

mI :=-CK2 ,(34Nk,-8k )kk (20b)
with Nk, =-N I- (kkk, I kV)

The first equation is referred to as the "Kij return model" while the second one is the "Nij
return model". N1 j depends only on anisotropy in the orientations while Kij also responds
to anisotropy in the lengths of the eddies. CKI and CK2 are tuning constants that we
determined to be respectively 4.0 and 1.0. Based on numerous simulations, we
determined Kij to be the best performing return case as shown below in Figure 30.

At first it seems as the Ku-return model performs better than the Ny. However, looking
closely, it is really difficult to come up with a conclusion. Kij seems to work best on the
Rii terms while Nij best performs on the non-diagonal elements. It is our goal to further
investigate this as part of the future work.
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Figure 30: m,'A and m, B model comparisons

As previously mentioned, (CXI , CK2 ) are tuning constants that we determined to be
respectively (4,10) for Nij, and (1,4) for Kij.

Shear/Strain Flows
In this section, we used various DNS as well as experimental cases to test our model
performance; primary in the Reynolds stresses analysis of shear flows. Tables 9 and 10
below provide a summary with the values of the constants CR and CK•

Matsumoto LePenven A LePenven B
SK/c 4.71 0.43 0.33
ReT 152 612 846

(CR,CK) (4,10) (4,10) (4,10)
Strain Tensor r0 30 0" (5.48 0 0 • 8.86 0 0

0 J 0 1.99 0 0 -2.36 0
0 00 . 0 0 -7.47.) 0 0 6.50)

Table 9: Matsumoto and LePenven summary using (Rotta-L, Kii), which is (D, 1,AmA")
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Hallback -PS
ReT 11

(CRCK) (1,4)
SICK/ 9 3 1

Strain (4.36 0 0' "1.46 0 0 ('0.49 0 0
Tensor L 0 -4.36 0 0 0 -0 0 0

0 0 0.ý 0 0 -1.46) 0 0 -0.49J

Table 10: Hallback's summary using (Rotta-L, K1j) for Plane Strain

Numerical Results: return-to-isotropy and shear/strain deformation
To illustrate the return-to-isotropy above, three different cases were used: LePenven,
Matsumoto and Hallback. Only cases that are highly dependent on retum-to-isotropy
were used to determine the values of our constants as well as to validate-the models. All
initial conditions are shown above in Tables 9 and 10. The results are shown in Figures
31 and 32.
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Figure 3 1: Le Penven - case A. a) Reynolds stresses and b) Kinetic energy
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Figure 32: Le Penven - case B. a) Reynolds stresses and b) Kinetic energy
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Correspondingly, the oriented-eddy collision prediction was compared to the
homogeneous shear and strain flows: Matsumoto (Figure 33), and Hallback PS (Figure
34):

40 i 1 1 1
umoto

30 - *r R3

20 

*
10 .

_.001

-10 1 I I
0 2 4 6 8 10 12

St

150 1 1

140

130 [Matsumoto:i

120K

110

90 •

803

60 - , •
50

40O

30

0 t- I I I

o 1 2 3 4 5 6 7 8 9 10
St

Figure 33: Matsumoto's shear deformation. The dots represent his DNS and the lines represent
our model prediction. a) Reynolds stresses and b) Dissipation and kinetic energy
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Figure 34: Hallback - Plane Strain a) S=3 and b) S=1
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Diffusion
In equations (7a) and (7b) the final terms, V((v + v,)VR? ) models the diffusive action of

the Reynolds stresses while V ((v + vT)Vk,)accounts for the diffusive action of the

orientation vectors k,. In one-dimension, V ((v + VT)VR, ) corresponds to

yOy
v is the fluid viscosity while v, corresponds to the eddy viscosity. We defined local and
global eddy viscosities. As mentioned before, "local" implies that all calculations are
done locally. In this case, the model uses a local vy that is defined as

VL=CL ( (22a)

withk= I =_1, and CL = I. Regarding the global eddy viscosities, two equations that2

are referred to as globabll and global2 (v,` and v,"2) are currently being evaluated. The
global] and global2 are similar, with the only difference that in the first case, the local
kinetic energy and dissipation are being summed before dividing, whereas in the second
case, the summation is done after the division. These concepts are illustrated below,

V' G =CGI , I )- (22b)

v, G2 = CG 2 -I.[j-)-- (22c)

where CGI = CG2 = 1 and 7 implies summation over the orientations.

As expected for isotropic flows (the orientations vectors all have then same length), both
global eddy viscosity formulas (VG' and V.,62 ) performed equally as shown in Figure 35
below. The comparison was done using the DNS of Carati:
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Figure 35: Eddy viscosity comparison for both global equations

After implementing the diffusion in the code along with all three variants of the eddy
viscosity various simulations were conducted in order to determine the efficacy of the
eddy collision model. It is important to mention that the kinetic energy decay is no
longer homogeneous (as previously) but instead is also spatially dependent. In the
diffusion case, at one fixed time t, we are looking at both the kinetic energy and
dissipation at different locations (y). The first step in the analysis is to determine which
eddy viscosity equation best models the diffusion process. Starting with vG1 (22a),
various simulations were conducted as part of the evaluation process. The first simulation
was run against that of Chasnov and shows the diffusion process at different times t.
Chasnov's flow is inhomogeneous with the following characteristics: shearless,
irrotational and isotropic with periodic boundary conditions. Note that in order to reduce
the time step, we interpolated the original data as represented by the solid blue line.

Next in Figure 36, we looked at the diffusion evolution at times t=1.375, 4.125 and 9.625
seconds. The asterisks represent the data and the matching solid blue lines correspond to
our simulations.
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Figure 36: Kinetic Energy versus position at different times t. The matching blue lines correspond
to the OEC simulations. a)linear-linear plot and b)log-linear plot.
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The second diffusion simulation matched that of Gilbert. Gilbert assumes a shearless,
irrotational and homogeneous flow. In addition, the flow has some levels of anisotropy.
The stars represent data from Gilbert at times t=0, 0.0292, 0.0402, 0.0764, 0.0884,
0.1154, 0.1274, 0.1634 and 0.2024 seconds. The matching solid lines correspond to the
simulations.

1

Gilbert
0.7 0 0 Data -e- .

-. Simulation0.5

0 .4 ... ,100 1 F @W, 0 _-_-

0.3 -! N W =0.02 2s
0.2 40 W * W .. .. - --=0.04,2s
0.2 - _I41 I __!II '" - _•

-.... - -0.07 '4s

0.070.08 4s0.10

0.07

0.05

0.03 T1---1
0.02

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Y-Yo

Figure 37: R, (kinetic energy component) versus position. The stars represent data from Gilbert
at times t=0, 0.0292, 0.0402, 0.0764, 0.0884, 0.1154, 0.1274, 0.1634 and 0.2024 seconds. The

matching solid lines correspond to the OEC simulations.

The final set of data that was looked at is a more recent one (2003) and was published by
Carati. Carati's data is unique in a sense that we have access to both the kinetic energy
and the dissipation rate. Here although not ideal, we used zero boundary conditions
compared to periodic conditions in the two cases above (Chasnov, Gilbert). For reasons
that remain unclear at this time, the OEC isotropic simulations decay a little faster than
expected. The results obtained are shown below in Figures 38 and 39:
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Figure 38: Kinetic Energy versus position at different times t. The stars represent data from Carati
at times t=-0, 0.071 and 0.191 seconds. The matching solid lines correspond to our simulations.

2501 1 1 1 1
Caai: e ps

225 + + t=Os POs
* * t=0.071s

200 X X t=0.191s
* Intepolated IC

175 Simulation -_

150

S125
100- piia w-P•oW 071 s

50 -0. 191 S

25' -

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5
Y

Figure 39: Dissipation versus position at different times t. The stars represent data from Carati at
times t=O, 0.071 and 0.191 seconds. The matching solid lines correspond to our simulations.
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Conclusions & Future Work

This project has allowed us to demonstrate that oriented-eddy collisional (OEC) models
are an interesting, accurate, and viable approach to turbulence modeling. We have
demonstrated that:

"* Models exist in the regime between LES and RANS that have very attractive cost
and accuracy attributes for current day design.

" It is possible to increase the physics in turbulence models and reduce the number
of tuned constants, while still having a cost effective model that can run on a PC.

" The structure (orientation) of turbulence is just as import as the magnitude of the
fluctuations. Models which represent structure have huge advantages in capturing
the turbulence physics.

"* The model can be interpreted as a model for the evolution of the two-point
correlation. Critical to this model - is decomposing the two-point correlation
into self-similar 'modes'.

As with any turbulence model, a great deal of work remains to validate this model. In
this project we have clearly demonstrated that the approach is extensible and can
accurately predict a wide variety of quite different but fundamental turbulent flow
situations.

Future work will complete the modeling of wall effects. In addition, we expect this
model to predict transition very well, and this will be demonstrated. Finally, this model
will be implemented in a 3D, unstructured, parallel, Navier-Stokes code so that more
complex and practical flow situations can be tested.
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